Online Meta-Learning For Hybrid Model-Based Deep Receivers

نویسندگان

چکیده

Recent years have witnessed growing interest in the application of deep neural networks (DNNs) for receiver design, which can potentially be applied complex environments without relying on knowledge channel model. However, dynamic nature communication channels often leads to rapid distribution shifts, may require periodically retraining. This paper formulates a data-efficient two-stage training method that facilitates online adaptation. Our mechanism uses predictive meta-learning scheme train rapidly from data corresponding both current and past realizations. is applicable any network (DNN)-based receiver, does not transmission new pilot training. To illustrate proposed approach, we study DNN-aided receivers utilize an interpretable model-based architecture, introduce modular strategy based meta-learning. We demonstrate our techniques simulations synthetic linear channel, non-linear COST 2100 channel. results allows outperform previous self-supervision joint-learning by margin up 2.5 dB coded bit error rate rapidly-varying scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Deep Episodic Value Iteration for Model-based Meta-Reinforcement Learning

We present a new deep meta reinforcement learner, which we call Deep Episodic Value Iteration (DEVI). DEVI uses a deep neural network to learn a similarity metric for a non-parametric model-based reinforcement learning algorithm. Our model is trained end-to-end via back-propagation. Despite being trained using the model-free Q-learning objective, we show that DEVI’s model-based internal structu...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Online Learning of Deep Hybrid Architectures for Semi-supervised Categorization

A hybrid architecture is presented capable of online learning from both labeled and unlabeled samples. It combines both generative and discriminative objectives to derive a new variant of the Deep Belief Network, i.e., the Stacked Boltzmann Experts Network model. The model’s training algorithm is built on principles developed from hybrid discriminative Boltzmann machines and composes deep archi...

متن کامل

Deep learning-based CAD systems for mammography: A review article

Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Wireless Communications

سال: 2023

ISSN: ['1536-1276', '1558-2248']

DOI: https://doi.org/10.1109/twc.2023.3241841